### **User Modelling**

#### Essays

- Essay topics posted on web
- 4 topics, covering dialogue management, reinforcement learning, user modelling, and language generation
- Annotated bibliography due 24 Apr
- Papers due in Week 29 May

#### What we'll look for

- General overview of the topic
  - Why is it of interest? What's hard?
- Understanding of some of the basic issues in the field (e.g., portability, data collection, ease of use)
- Understanding of how these basic issues have been addressed in at least 2 implementations
- Understanding/critical analysis of evaluation metrics (if any) applied to case studies

#### Annotated bibliography

- Find at least 10 reference papers for your topic
- Briefly (one/two sentences; 2-3 bullet points) describe why paper might be relevant/what is interesting about paper
- Try to find a mixture of papers that describe basic facts about topic/implementations

#### What is a User Model

- A model of how the user interacts with the system and/or how the system responds to the user
- Can model the task (and how to aid the user to accomplish it)
- Can model the user (characteristics relevant to application)
- Can model the interaction (input/output devices, how the user interacts with these)
- Can model the presentation (modality)

#### Why do user modelling

- No single interface will satisfy all users
- Users have different needs and those needs change over time
- Adaptive systems monitor users interactions and change the interface/content
- Contrasted with "training wheels" systems that simply disable/simplify system components

### What is user modelling in SDS context?

- Adaptive systems
- Error handling
- Types of user modelling:
  - Dynamically adaptable--based on current interaction
  - Adaptable over time--based on data gathered over time for particular user/user population

# Functions of user model (Jackson, 2003)

- Supporting system use
  - Performing routine tasks automatically
  - Adapting the interface
  - Providing advice
  - Taking control of the dialogue
- Supporting information gathering
  - Helping users get information
  - Tailoring presentation to specific users
  - Recommending
  - Supporting collaboration
  - Providing ability to learn

#### Question

What classes of attributes do you think should be in a user model for a spoken dialogue system that provides information about restaurant/theater options? Or one that enables checking on/trading within one's stock portfolio? How could the contents of the user model be used to guide the system in speaking (or displaying) information to the user?



#### Attributes maintained in user model

- User preferences, interests, attitudes and goals
- Proficiencies (e.g. task domain knowledge, proficiency with system)
- Interaction history (e.g., interface features used, tasks performed/in progress, goals attempted/achieved, number of requests for help)

### Inputs to user model

- Explicit preferences, goals from questionnaires
- Explicit personal characteristics (e.g., job, account information)
- Self assessments
- Specific actions
- Vision and gaze tracking

## Techniques for automatically constructing user models

- Bayesian (probabilistic)
- Logic-based (e.g.inference techniques or algorithms)
- Machine learning techniques

# Some simple examples of user modelling

- Storing, retrieving, and using specific details about user in querying database
  - Preferred airline
  - Home airport
- Modifying language model to reflect details of user's account
  - Boost probabilities for particular stock names in financial application

# Why do user modelling in spoken dialogue systems?

- Domains are complex
  - Large amount of information
  - Multiple sources of information
  - Complex interplay of constraints
- Delivery modality can be quite simple
  - Small screens
  - Telephone-only

# User modelling in spoken dialogue systems

- Spoken dialogue systems typically provide interfaces to large amounts of data
- Two choices are available:
  - Expect the user to construct a model of domain
  - Let the system build a model of user
- Spoken dialogue systems are meant to be partners in a mixed-initiative system, meaning that both sides contribute to achieving final goal
- Some sort of data compression is necessary
  - Compression should be done in a personalized way
  - Customization should streamline process of information delivery

#### Example of SDS with user model: Kyoto city bus information system (Komatani, '03)

- System determines which bus a user wants to take
- System tells user how long it will take for bus to arrive
- 652 bus stops in Kyoto/85 bus routes
- Bus information changes continually
- Important to communicate information quickly

### Example dialogue

- System: Please tell me your current bus stop, your destination, or the specific route.
- User: Shijo-Kawaramachi.
- System: Do you want to take a bus from Shijo-Kawaramachi?
- User: Yes.
- System: Where will you get off the bus?
- User: Arashiyama.
- System: Do you want to go from Shijo-Kawaramachi to Arashiyama?
- User: Yes.
- System: Bus number 11 bound for Arashiyama has departed Sanjo-Keihammae, two bus stops away.

#### Dimensions modelled

- Skill level
  - Lower skill level: more guidance (e.g., more yes/no questions, more instruction)
- Domain knowledge level
  - Kyoto natives might want more detailed information (e.g., alternate route)
- Degree of "hastiness"
  - If user is in a hurry, streamline interaction (i.e., no confirmations)
  - If user is not in a hurry, modify system along previous two dimensions to reflect user model

### Features used by user model

- Presence of barge-in
- Elapsed time of current utterance/from beginning of dialogue
- Recognizer confidence score
- Number of slots filled by current utt
- How bus stop specified (i.e., correct name used)

### Implementation of user model

- Decision tree based
- Trained on 215 dialogues, 1492 utterances
- Each utterances labelled by hand for each dimension in user model
- Features collected over utterances/completed session
- Deployed system (changing dynamically) deployed on 20 naive subjects
- With user model, both duration and number of turns decreased significantly with user model
- Novice users showed equivalent decrease in amount of time using system
- More users judged overall as experienced when using user model