Evaluation of Spoken Dialogue Systems

Three different dialogue systems

- Process-oriented
- Browsing
- Call-routing
Functionality displayed

- Data elicitation
- Confirmation
- Recovery from error
 - Reprompt
 - Fallback to DTMF
- Flexibility in input
- Default action (possibly correct)?

AMITIES, a Financial Service Application

- Hello, this is Amities. What can I do for you.
- Yes, this is Stella Lang. My card number is <CARD_NUMBER>. Can you tell me the balance on my account.
- Can you just confirm the city and county?
- Yes, it’s London, Middlesex.
- I’m sorry. I didn’t understand what you said. Can you repeat please?
- London Middlesex.
- Alright, your balance is seventeen fifty three pounds and twenty pence. Anything else I can do for you?
- Yes, I’d like to make a payment of fifty three pounds with my debit card.
- Can I have the debit card number, Miss Lang?
- Sure, it’s <CARD_NUMBER> and it expires October, 2006.
- What’s the issue number please?
- One.
- Okay, Miss Lang. I’ll send the payment amount of fifty three pounds. Did I get that right?
- Yes. What’s my new balance please?
- Okay that’s gone through. Your payment will be credited overnight and will reflect on your next statement. Your balance is seventeen hundred pounds and twenty pence. Anything else I can do for you today?
- No, that’s it, thanks.
- Thanks very much for your call. Goodbye.
- Bye
An Air-Travel Planning Application

- I’d like to return the following Tuesday.
- Okay, flights from Minneapolis St. Paul to Boston on Tuesday Nov. 27th. One moment please. Can you provide a departure or arrival time? There are no non-stop flights. There are at least six connecting United flights from Minneapolis St. Paul to Boston on Tuesday Nov. 27th.
- I’d like to leave around 9:00 a.m.
- Okay, United flights from Minneapolis St. Paul to Boston leaving at 9:00 a.m. on Tuesday, Nov. 27th. One moment please. What about a flight connecting in Chicago O’Hare leaving at 10:00 a.m. Would that work? I also have a flight connecting in Chicago O’Hare at 8:00 a.m.
- 10:00 a.m.
- United flight 582 connected to United flight 510 in Chicago O’Hare has been added to your itinerary. You depart Minneapolis St. Paul at 10:00 a.m. and arrive in Boston at 2:56 p.m. Shall I price your itinerary?
- Pricing your itinerary will take a while. In the meantime, I’ll summarize your itinerary for you. <ITINERARY>. The cheapest price for your itinerary is $305.50. Shall I email your itinerary to you?
- Yes, please.
- Your itinerary has been emailed. To help us improve Mercury, please stay on the line for a moment to answer a few questions.

Call Routing

- Goal of system: route call to the appropriate operator
Question

- Given the very different systems you heard, what evaluation metrics do you think you could apply to help system developers
 - understand system behavior
 - assess user attitudes towards the system

Goals of Evaluation

- Measure something that is correlated with success
- Require as little human input as possible
- Run continuously
- Provide feedback that is useful in making the system better
Types of Metrics

- **Objective, measuring**
 - System performance, often at the module level
 - Success/task completion, measured by some objective goal
 - Efficiency
- **Subjective, measuring**
 - User perceptions

Evaluation: Quantifying System Behavior

- **Determining system accuracy**
 - Have system components improved?
 - Does our system answer queries correctly?
 - Are subjects able to complete tasks?
- **Verifying system integrity**
 - Has a change in one system component adversely affected another?
 - Have we introduced a catastrophic bug?
- **Understanding how our systems are used**
 - Do our systems do what we claim they do?
 - Do our subjects use the system to solve real problems?
 - Are users satisfied with the results?
Some Sample Evaluation Metrics

- Component evaluation:
 - Word/sentence evaluation
 - Parse coverage
 - Understanding evaluation
 - Paraphrase comparison
- System-level evaluation:
 - Static database assessment
 - Logfile evaluation

Speech Recognition—Word Error Rate

- Defined as:
 - Insertions + Deletions + Substitutions
 - Computed on word string
 - Widely used in recognition community
 - Most common metric for ASR performance

Hyp: can you show flights from boston to denver on the afternoon of the sixteenth

Ref: show me flights from boston to denver on the afternoon of june fifteenth

D D I S S
Increasing amounts of data have allowed for improved language and acoustic models.

- Initial system trained on read speech
- Data collection from real users provides a better match between training and testing conditions

For In-Vocabulary Utterances only

Sentence Error

- Sentence must be completely correct (no substitutions, insertions, or deletions)
- Usually much higher than word error and understanding error
- Can penalize irrelevant errors (e.g., “a” vs. “the”, homophones)
- Sample performance on one weather domain test set: 34.5% (yet understanding rate is much higher)
Understanding Evaluation: Concept Error

- Goal: automatic evaluation of understanding from meaning representation
- Motivation:
 - Component technologies interact, making evaluation of individual modules insufficient
 - Data coming in at a rapid pace, making examination of individual question/pairs impossible
 - System can offer information not specifically asked for, making evaluation of database tuples insufficient
- Mechanism: comparison of key_value representation from semantic frame
- Computed in same way as Word Error:
 - Insertions + Deletions + Substitutions

Understanding Evaluation: [key:value] Pairs

- Uses flat key-value representation for evaluation of understanding component
 - WEATHER: rain CITY: boston DATE: tomorrow
- Flattened structure evaluated for insertions, deletions, substitutions
 - Equivalence classes can be used to represent variants that do not affect understanding (e.g., ‘weather: sun’ and ‘weather: cloudy’ might map to a general statement about cloud cover)
 - Key-value pairs can be weighted by importance (e.g., city names)
How to evaluate the evaluation metric?

- Does it capture problematic utterances?
 - Can it identify places where attention is needed to fix problems?
- Is it correlated with an objective measure of performance (e.g., human rating)?

Comparison with Human Evaluation

- Automated evaluation methodology compared against human evaluation
- Test set: 483 weather domain utterances
- 93% agreement on utterances judged “correct” by both methods
- Disagreements mainly on hard-to-evaluate cases:
 - Reference utterance unevaluable
 - Utterance correct because of pragmatics/discourse
 - Human judgement in error
How metrics are related

- WER and CER, SER and UER correlated
- Difference between UER and SER can be accounted for partially by robust parsing

Beyond Utterance-Based Evaluation Metrics: Dialogue-Based Evaluation

- Utterance-based metrics do not measure understanding in the context of a dialogue
- Dialogue-based metrics can potentially quantify:
 - How effectively a user can convey concepts to the system
 - How efficiently a system understands concepts
- A simple way of viewing dialogues and their associated parameters can be very useful
- Automatic procedures necessary to keep up with large amounts of data
Issues in Evaluating Dialogue Data: Consistency

- If `answer` is the key, what happens when answer changes?
 - What’s the cheapest flight from London to Boston?
 - Will it rain tomorrow in Sheffield?
 - Is there a good Chinese restaurant in Walkley?

Dynamic data result in same query having different answers on different days

Issues in Evaluating Dialogue Data: Changes in System Capabilities

Dialogue 1:

User: I want to fly from Boston to Alexandria, Louisiana
System: I’m sorry, I didn’t understand what you said. Please repeat your query.
User: I want to fly from Boston to Alexandria, Louisiana
System: I’m sorry, I didn’t understand what you said. Please repeat your query.
User: Boston to Alexandria. Flights.
System: I’m sorry, I didn’t understand what you said. Please repeat your query.
Issues in Evaluating Dialogue Data:
Changes in System Capabilities
(simple change)

Dialogue 2:

User: I want to fly from Boston to Alexandria, Louisiana.
System: Okay, flights from Boston to Alexandria. On what date would you like to leave?
User: I want to fly from Boston to Alexandria, Louisiana.
System: Okay, flights from Boston to Alexandria. On what date would you like to leave?
User: Boston to Alexandria. Flights.
System: Okay, flights from Boston to Alexandria. On what date would you like to leave?

Issues in Evaluating Dialogue Data:
Changes in System Capabilities
(more complex change)

Dialogue 3:

User: I want to fly from Boston to Alexandria, Louisiana.
System: I think you want to fly to a city in Louisiana. Please speak and spell the name of the city you wish to fly to.
User: I want to fly from Boston to Alexandria, Louisiana.
System: I think you want to fly to a city in Louisiana. Please speak and spell the name of the city you wish to fly to.
User: Boston to Alexandria. Flights.
System: I'm sorry I didn't understand you. Please repeat your query.
Issues in Evaluating Dialogue Data: Data

- How do we use old data to test new systems/functionality (without spending so much time on the data themselves that we don’t have time to evaluate)?
- How do we make use of large amounts of data?
 - Freezing databases
 - Inconvenient for large databases
 - Doesn’t test new functionality
 - Adding contrived queries to get incoherent dialogues back on track/test new functionality
 - Very complicated
- What best represents the correct answer?
 - Key-value representation useful for complex dialogues
 - Each incoming query evaluated against the “truth”
 - Answer frames or strings (requires frozen database)

Dialogue-Based Evaluation

- **Concept Efficiency** [frustration measure]
 - On average, how many times did the user repeat a concept before the system understood it?
- **Query Density** [information transfer measure]
 - On average, how many concepts does the user communicate to the system per utterance spoken?
- Concepts monitored *after* turn management is completed
 - Assesses recognition, understanding, discourse, and dialogue
- Both measures require a re-processing of log files after orthographic transcription has been supplied
- Measures automatically computed
- Requires specification of concepts for each domain
What you need to keep track of/know

- List of concepts to be monitored (e.g., source, destination, date, time)
- What the user actually said (i.e., an orthographic transcription of utterance)
- What the system did
 - If reusing data, user queries are based on what happened at time of data collection
 - To understand how long it took to get a concept across NOW vs. THEN, you have to know how long it took THEN and how long it takes NOW
 - To get an idea of system performance NOW vs. THEN, you need to keep both contexts around

Regression Testing Dialogue Data

- In practice, a bit tricky, but it can be automated
Concept Efficiency

- It took one user utterance to convey one concept in the left example, and two user utterances in the right example.

\[
CE = \frac{1}{N_d} \sum_{i=1}^{N_d} \frac{N_u(i)}{N_c(i)}
\]

- \(N_d\) = Number of dialogues
- \(N_c(i)\) = total number of concepts in the \(i^{th}\) dialogue
- \(N_u(i)\) = number of unique concepts understood by system in the \(i^{th}\) dialogue

Query Density

- Two concepts were conveyed in one user utterance in the left example, and one in the right example.

\[
QD = \frac{1}{N_d} \sum_{i=1}^{N_d} \frac{N_u(i)}{N_q(i)}
\]

- \(N_d\) = Number of dialogues
- \(N_q(i)\) = total number of user queries in the \(i^{th}\) dialogue
- \(N_u(i)\) = number of unique concepts understood by system in the \(i^{th}\) dialogue
CE and QD in Practice

- CE on a subset of flight domain utterances: 0.91
 - Approximately 1 in 10 concepts had to be repeated
 - High concept efficiency correlated with high user satisfaction?
- QD on subset of flight domain utterances: 1.7
 - Subjects are entering more than one concept per turn
 - Lower query density correlated with degree of system initiative?

System Diagnostics from Logfiles

- Metrics must be automatic and provide easy-to-access, daily summaries to system developers
- Dialogue-level diagnostics
 - Task completion
 - Characteristics of user/system behavior (e.g., repeated responses, user difficulty in conveying particular concepts)
- Utterance-level diagnostics
 - User/system confusion (e.g., keypad entries)
 - Number of help requests
 - Computed off-line from logfile
Measuring Task Performance from Logfiles (Air Travel Domain)

- Computed completely automatically
 - Logfiles parsed for self-consistent legs, pricing, and email

- Incomplete: self-consistent legs but incomplete itinerary
 - Guest users often just shop for possible flight times
 - Registered user dialogues in this category revealed the most interesting problems

Conclusion

- Evaluation cannot be ignored in SDS development
- Suite of evaluation metrics should be in place before system is deployed
- Once system is running, evaluation metrics must be automatic and ongoing
- User satisfaction is the final answer, but it’s the most difficult to collect