Architectures for Spoken Dialogue Systems/Dialogue Management

Spoken Dialogue Systems

TTS ASR
Text-to-Speech Synthesis Automatic Speech Recognition

SLG SLU
Spoken Language Generation Spoken Language Understanding

DM
Dialogue Management

Speech Speech
Data, Rules Words
Goal Meaning

Words
Which has the hardest job? Why?

- ASR – recognize the words the user spoke
- NLP – recognize the meaning of the user’s utterance
- DM – decide what to answer
- NLG – formulate the answer in natural language
- TTS – speak the answer clearly

VXML: Strengths

- Simple, straightforward format
- Modelled on HTML, known technology
- Makes design/deployment of simple dialogue systems possible for developers with little/no background in ASR/NL
- Audio server can be hosted remotely, taking away further complication
VXML: Weaknesses

- State-based dialogue systems inherently limiting
- Underlying technologies typically also limited
 - Simple grammars—isolated words/phrases
 - Grammar-based ASR
 - Limited capabilities for language generation
 - Limited logic/reasoning for dialogue

What else might a spoken dialogue system need to account for?
Input from the Audio Server

- **If barge-in is enabled, how is truncated input interpreted:**

 User: I’m interested in Thai restaurants in North London.

 System: *I know of 8 Thai rest-*

 User: Wait, that’s not what I wanted.

 User: I’m interested in Thai restaurants in North London.

 System: *I know of 8 Thai restaurants in North London.*

 There’s Banh Mi, Thai Palace, Gold-

 User: Wait, that’s the one I wanted.

Input from ASR

- **Can dialogue state constrain recognition choice?**

 User: I’m going to Dallas on May eighteenth.

 System: *Okay, where are you leaving from?*

 User: Dulles.

 User: I want to return on May twentieth.

 System hears:

 i want to return on may twelfth

 System: *So that’s returning on May twelfth.*
What information does NLP use?

- Words/phrases are interpreted *in context*

 User: I need to book a flight.
 System: Okay, where are you leaving from?
 User: Dulles.

How about NLG?

- Tailor response to fit user model/current history

 User: I'm interested in Thai restaurants in North London.
 System: I know of 8 Thai restaurants in North London. Two of them have very high food quality: Banh Mi and Golden Siam.
Can TTS use dialogue information?

- **Emphasize new/pertinent information**

 User: I’m interested in Thai restaurants in North London.
 System: I know of 8 Thai restaurants in North London. Two of them have very high food quality: Banh Mi and Golden Siam.
 System: Okay, Chinese restaurants in North London.

What else goes into SDS?

- **Meta-level responses**
 - Dynamically generated help messages based on current state of dialogue/input/backend data
 - Summary descriptions of backend data
- **Fallback mechanisms**
 - Descriptive responses when user query results in NULL output from database
- **Complex reasoning about domain/database**
 - Intelligent ordering of database tuples
 - Incorporation of user preferences
 - Analysis of backend data in light of dialogue context
What else goes into SDS?

- Global data stores for reprocessing of system output across multiple turns
- Multimodal capabilities (ongoing work)
- Multilingual capabilities
- Learning

Morale: there’s a lot to think about

- Dialogue systems involve individually complex components
- Dialogue systems involve complex interactions among these individually complex components
- Dialogue systems are becoming ubiquitous
- The model for most people is human-human interaction
Considerations for dialogue manager

- Prototyping
 - How easy is it to get a 0th order iteration up and running?
 - What modules are included?
 - Are I/O specs standardized/easy to understand?
 - How easy is it to expand the system?
 - Are modules black boxes?

- Robustness
 - Are fallback mechanisms implemented?
 - Is there error catching?

Considerations for dialogue manager

- Expertise required
 - Is there a separate scripting language?
 - How is basic functionality (i.e., ASR, response generation) expanded?
 - How much computational linguistics, acoustic phonetics, signal processing, UI design is needed?
Approaches to building more complex SDS

- Architectures:
 - Information State Update model (University of Edinburgh)
 - Galaxy Communicator (MIT)
- Dialogue Management schemes:
 - Information State Update approach (University of Edinburgh)
 - Data-driven (MIT)

Commonalities among “advanced” architectures

- Unify sets of software servers/agents, each performing different task
- Control flow of information among servers
- Are rule-based at some level
- Have stores for global variables
Design considerations for research architectures

- Sequential rules vs. blackboard
- Unification of all HLT servers
- Common IO specs
- Plug-and-play

Open-Agent Architecture

- Allows integration of software agents for prototyping dialogue system
- Agents conform to conventions of framework
- Use common language for communication
- “Facilitator” mediates interaction among agents
- Facilitator maintains ordering constraints implicitly
Information-State Update Model

- Core: Dialogue Move Engine
 - Receives input from other agents (e.g., ASR)
 - Updates internal state to reflect new information
 - Calls other agents (e.g., TTS)
- Declarative representation of dialogue modelling
 - Specification of contents of dialogue
 - Datatypes for information state
 - Update rules for dealing with dynamic information
 - Control strategy

DIPPER: an implementation of the ISU model

- Update language independent of any particular programming language
- Incorporates many off-the-shelf OAA agents
Galaxy Communicator

- Sequential rules
- Configuration specifically aimed at spoken dialogue systems
- Multiple servers interacting with one central hub

Basic components

- Hub
 - Keeps track of global state
 - Mediates interaction among servers
 - Controls logging, global parameters
- Servers
 - Stateless
 - Connect to hub via control file
- Token
 - Global store for attributes
 - Unless otherwise specified, attributes disappear with new turn
Control Strategy

- A set of ordered rules is a “program”
 - Simple syntax supports boolean and arithmetic tests applied to hub variables
 - All rules that apply are simultaneously executed
 - Relevant input variables are packaged into a frame and sent to target server
 - Frame is queued by hub when target server is busy
- Each program has a separate name
 - The “main” program controls processing for user queries
 - Other programs control module-to-module sub-dialogues and asynchronous I/O
Control Strategy (cont’d)

- Upon start-up, hub sends a “welcome” frame to each server
 - Server-specific initializations
- Hub polls continuously for new inputs or replies
- New inputs generate new tokens
- Tokens are processed according to program rules
- Replies modify existing tokens
- Tokens destroyed when no further rules apply
- Multiple users are managed via distinct sessions
 - Retain state for user’s dialogue; e.g., language, domain, discourse context, etc.

Sample rule

RULE: :parseFrame & !:requestFrame → contextTracking
RETRIEVE: :historyFrame
IN: :parseFrame
OUT: :requestFrame :historyFrame :domain
STORE: :historyFrame

- Boolean tests on attributes in global token
- IN and OUT keys specify specific attributes to retrieve from and store in token
- RETRIEVE and STORE used for attributes in global store
- Rules can also
 - Specify logging parameters (both into and out of operation)
 - Rename variables
Turn Management (the heart of Dialogue Management)

- Phases of turn management
- Making turn management domain independent
- Making turn management data-driven
 - Using data to determine what to say
 - Using data to determine concepts

Roles of dialogue management in information retrieval domains

- Resolve ambiguities
 - Ambiguous input constraint (e.g. Miami, Florida or Miami, Ohio)
 - Pragmatic considerations (e.g., too many flights to speak)
- Inform and guide user
 - Suggest subsequent sub-goals (e.g., what time?)
 - Offer dialogue-context dependent assistance upon request
 - Provide plausible alternatives if requested information unavailable
 - Initiate clarification sub-dialogues for confirmation
- Influence other system components
 - Adjust language model due to dialogue context
 - Adjust discourse history due to pragmatics: “Christmas” = Dec25
 - Set up context for system initiative: “where to?” = destination
Phases in dialogue management

- Pre-retrieval
 - Verify input
 - Check confidence scores
 - Deal with system initiative
 - What day will you be arriving?
 - November 23rd → interpret as arrival date
 - Determine whether a query should be sent to the database
 - Have sufficient constraints been elicited from user?
 - I need a hotel in Boston. → query for brand or location
 - Can the query be resolved from previous response?
 - What is the address of the third one? → from previous response

- Retrieval
 - Construct frame for database query
 - Paraphrase database query frame
 - Connect to database and retrieve tuples
Phases in dialogue management

Input query

Pre-retrieval \[\rightarrow\] Retrieval \[\rightarrow\] Filtering \[\rightarrow\] Response construction

- Filter result from database, based on constraints from user
 - *Which one is cheapest?* \[\rightarrow\] find cheapest in database tuples
 - *I’d like a Sheraton.* \[\rightarrow\] filter database tuples for brand
- Order database result
 - *I’ve found three hotels near the airport. The Airport Hilton for $219.00, the Sheraton Logan for $230.00 and the Marriott at Logan for $249.00.* \[\rightarrow\] response list ordered by price

Phases in dialogue management

Input query

Pre-retrieval \[\rightarrow\] Retrieval \[\rightarrow\] Filtering \[\rightarrow\] Response construction

- Speak database tuples or summarize
- Add comments when necessary
 - *There is no Hyatt near the airport. There are two Hyatts in Boston.*
- Add system initiatives and/or continuant prompt
 - *What city are you interested in?*
 - *I have found three hotels Please select one.*
- Provide help/meta-level responses
 - *You’ve been asking about hotels in Boston. You can now specify a brand of hotel or location in Boston.*