Overview

• NLG: what it is? what does it do?
• Template-based generation (canned text)
• Rule-based generation
• Trainable NLG
Some applications

- Simple report/letter writing
 - WeatherReporter: textual weather reports
 - STOP: personalised smoking-cessation letters
 - ModelExplainer: UML diagrams description for software development

- Question answering about knowledge bases

- Automated summarization of text

- Machine translation

- Dialogue systems

Inputs to a generator

- Content plan
 - Meaning representation of what to communicate
 - E.g. describe a particular restaurant

- Knowledge base
 - E.g. database of restaurants

- User model
 - Imposes constraints on output utterance
 - E.g. user wants short utterances

- Dialogue history
 - E.g. to avoid repetitions, referring expressions
Natural language generation objectives

• From a meaning representation of what to say
 – E.g. entities described by features in an ontology
 – E.g. has(WokThisWay, cuisine(bad))

• Output: a natural language string describing the input
 – E.g. “WokThisWay’s food is awful”

• Desirable properties
 – Simple to use
 – Able to generate well-formed, human-like sentences
 – Trainable? Able to learn?
 – Variation in the output?

Template-based generation

• Most common technique in spoken language generation

• In simplest form, words fill in slots:
 “Flights from SRC to DEST on DATE. One moment please.”

• Most common sort of NLG found in commercial systems

• Used in conjunction with concatenative TTS to make natural-sounding output
Template-based generation: Pros & Cons

• Pros
 – Conceptually simple
 • No specialized knowledge needed to develop
 – Tailored to the domain, so often good quality

• Cons
 – Lacks generality
 • Repeatedly encode linguistic rules (e.g., subject-verb agreement)
 – Little variation in style
 – Difficult to grow/maintain
 • Each new utterance must be added by hand

Enhance template generation

• Templates can be expanded/replaced to contain information needed to generate more complex utterances

→ Need deeper utterance representations
→ Need linguistic rules to manipulate them
Components of a rule-based generator

- **Content planning**
 - What information must be communicated?
 - Content selection and ordering
- **Sentence planning**
 - What words and syntactic constructions will be used for describing the content?
 - Aggregation
 - What elements can be grouped together for more natural-sounding, succinct output?
 - Lexicalization
 - What words are used to express the various entities?
- **Realization**
 - How is it all combined into a sentence that is syntactically and morphologically correct?
- **Prosody assignment** (spoken language generation only)
 - How to produce appropriate speech based on the previous levels of representation?

Spoken language generation: pipeline architecture

- **Content Planner**
 - What to say
- **Sentence Planner**
 - How to Say It
- **Surface Realizer**
- **Prosody Assigner**
- **Speech Synthesizer**
 - What is Heard
- **Dialogue Manager**
- **Spoken Language Generation**
- **Speech Synthesis**
Example

- Output from dialogue manager
 - Two assertions

    ```
    has(WokThisWay, cuisine(bad))
    has(WokThisWay, decor(good))
    ```

- Content planning
 - Select information ordering

- Sentence planning
 - Choose syntactic templates
 - Choose lexicon
 - bad \(\rightarrow\) awful; cuisine \(\rightarrow\) food quality
 - good \(\rightarrow\) excellent; decor \(\rightarrow\) décor
 - Aggregate the two proposition by merging objects
 - Generate referring expressions
 - ENTITY \(\rightarrow\) this restaurant

Example (continued)

- Realization
 - Choose correct verb inflection: HAVE \(\rightarrow\) has
 - No article needed for feature names
 - Convert sentence representation into a final string
 - Capitalize first letter and insert punctuation

- Prosody assignment
 - Standard pitch for an assertion
 - Emphasize user preference for food quality by increasing the voice intensity for modifier "awful"

\[\text{"This restaurant has awful food quality but excellent decor."}\]
Content planning

• Typically look at spoken/textual data to characterize how information is
 • Selected
 • Ordered
 • Combined together

• A content planner will take a meaning representation and produce a content plan tree
 – Leaves are bits of information
 – Internal nodes are rhetorical relations (Mann & Thompson, 1988)
 • E.g. justification, contrast, inference, etc.

Example content plan tree

• For a restaurant recommendation
• Each leaf is associated with a syntactic template

![Example content plan tree diagram]
Sentence planning

• Three main tasks
 – Lexicalisation
 • Many ways to express entities and rhetorical relations
 – E.g. Justify(X,Y) → “X because Y”
 → “X since Y”
 • Typically a domain lexeme database to avoid any misunderstanding
 – E.g. CUISINE → “food”
 – Aggregation
 – Referring expression generation

Sentence planning: aggregation

• Produces a shorter utterances and dialogues, but adds complexity

• Simple: combine two sentences using a conjunction

• Merge two sentences with same subject or same object
 – E.g. “The pizza is warm” + “The pizza is tasty”
 → “The pizza is warm and tasty”
 – E.g. “John bought a TV” “Sam bought a TV”
 → DOESN’T ALWAYS WORK!

• Syntactic embedding
 – E.g. “The pizza is warm” + “I’m eating the pizza”
 → “The pizza that I’m eating is warm”
 → “I’m eating the warm pizza”
Sentence planning: referring expressions

• How to refer to an entity?
 – Need to know if initial reference
 → dialogue history

 – Pronominalization algorithm
 • Trade-off between missed pronouns and inappropriate pronouns
 – Pronominalize all entities previously mentioned?
 No! Need to check for ambiguities, if entity with same person, gender and number was mentioned

Pipeline architecture

• Advantages
 – Modularity
 • Helps managing complexity
 • Components can be improved independently

• However
 – Lower level components can’t influence higher level generation decisions
 • E.g. if the utterance’s length needs to be controlled
 – Content and sentence planning decisions need to be influenced by the realizer
 – Many other research systems, but harder to maintain and scale up
 – Do humans use a pipeline?
Question

• If you had to build a dialogue system, which approach would you choose for your NLG component (between templates and more complex linguistic rules) and why? Feel free to choose a particular domain to support your case.
Making NLG trainable

• What does it mean?
 – Produce better language automatically by looking at a collection of existing texts

• Why?
 – Make it less domain dependent
 • Different sources of data for different domain
 – Produce more complex utterances
 • Requires less linguistic expertise
 • Idioms can’t be produced by rules
 • E.g. “This restaurant’s food is to die for”
 • E.g. “The service will make you want to kill yourself”

Making NLG trainable

• How?
 – Overgenerate and rank
 • Produce various candidate utterances
 – Rule-based
 • Use a statistical model to rank them
 – Function assigning a score to utterances
 – Typically learned based on textual data

• Pro
 – Initial generation can be imperfect
 » Conflicts between generation choices
• Cons
 – Usually high number of utterances to choose from
 – Can be hard to extract good model from data
HALogen: combining rules with statistical language models

((Langkilde-Geary, 2002)

Symbolic Generator
• Mapping rules
• Dictionaries
• Morphology

Statistical Ranker
• Ngram model based on 250 million words of newspaper text

Output

Packed set of expressions

Example input format

```
(a1 / |conform,adapt|
 :AGENT (n1 / NONHUMAN-ANIMAL)
 :REASON (c1 / |alter>verbify|
 :GPI (e1 / |environ|)))
```
Example Input and Output

\[(\text{a1} / \text{conform, adapt})\]

:AGENT \((\text{n1} / \text{NONHUMAN-ANIMAL})\)
:REASON \((\text{c1} / \text{alter} > \text{verbify})\)
:GPI \((\text{e1} / \text{environ})\))

Not-so-ideal:
- Beasts are adjusting because of a surround’s alteration.
- Faunas conformed due to alteratia of environs.
- Because of changing of surroundings, creature adapts.

Ideal:
- The animals adapted because of environmental changes.

Recasting input for surface-level syntax

\[
\text{IF top level contains logical-subject, and also contains voice-passive, THEN map logical-subject to postmod, and add anchor=by.}
\]

\[
(\text{"serve"}/ \text{voice} \text{passive} \text{logical-object} <\text{cuisine}> \text{logical-subject}<\text{venue}>)
\]

\[
(\text{"serve"}/ \text{voice} \text{passive} \text{logical-object} <\text{cuisine}> \text{logical-subject}<\text{venue}> :\text{postmod} (\text{\text{\langle venue\rangle}} :\text{anchor by}))
\]

\[
\text{"<Cuisine> is served by <venue>"}
\]
Symbolic Generator

- Mapping rules (about 255 rules)
 1. Recast one input to another
 2. Add missing information to under-specified inputs
 3. Assign linear order to constituents
 4. Apply functions, such as morphological inflection

- Dictionaries
 A. Sensus dictionary, based on WordNet
 - (~100,000 words and concepts)
 B. Closed-class lexicon
 C. User-defined dictionary

- Morphology rules

Using statistical language model to prune choices

- How to select the best alternative?
 - Estimate the probability of occurrence based on a corpus: n-gram language models
 - Estimates the probability of a sentence, by counting words in a corpus
 $$P(t) = P(w_1, w_2, \ldots, w_n) = \prod_{i=1}^{n} P(w_i | w_1, \ldots, w_{i-1})$$

 - Markov assumption: probability of a word does only depend on the n previous words
 $$P(w_j | w_1, \ldots, w_{j-1}) \approx P(w_j | w_{j-1}) = \frac{P(w_{j-1}, w_j)}{P(w_{j-1})}$$
N gram examples

• Bigram model (n = 2)

\[P(\text{I like drinking beer when I am not drunk}) \approx P(\text{I})P(\text{like} | \text{I})P(\text{drinking} | \text{like})P(\text{beer} | \text{drinking}) \]
\[P(\text{when} | \text{beer})P(\text{am} | \text{I})P(\text{not} | \text{am})P(\text{drunk} | \text{not}) \]

• Trigram (n = 3)

\[P(\text{I like drinking beer when I am not drunk}) \approx P(\text{I})P(\text{like} | \text{I})P(\text{drinking} | \text{I, like})P(\text{beer} | \text{like, drinking}) \]
\[P(\text{when} | \text{drinking, beer})P(\text{I} | \text{beer, when})P(\text{am} | \text{when, I}) \]
\[P(\text{not} | \text{I, am})P(\text{drunk} | \text{am, not}) \]

Computing N-grams

\[P(w_i | w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})} \]

Slightly more complicated to deal with zeros (interpolation)
How well do n-grams make linguistic decisions?

<table>
<thead>
<tr>
<th>Relative pronoun</th>
<th>Preposition (bigrams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>visitor who</td>
<td>in Japan 5413 to Japan 1196</td>
</tr>
<tr>
<td>visitor which</td>
<td>came into 244 arrived into 0</td>
</tr>
<tr>
<td>visitor that</td>
<td>came to 2443 arrived in 544</td>
</tr>
<tr>
<td></td>
<td>came in 1498 arrived to 35</td>
</tr>
</tbody>
</table>

Preposition (trigrams)

came to Japan 7 arrived to Japan 0

came into Japan 1 arrived into Japan 0

came in Japan 0 arrived in Japan 4

Word Choice/Singular vs Plural
reliance 567 reliances 0
trust 6100 trusts 1083

How well does HALogen work?

• Minimally specified input frame (bigram model):
 It would sell its fleet age of Boeing Co. 707’s because of maintenance costs increase the company announced earlier.

• Minimally specified input frame (trigram model):
The company earlier announced it would sell its fleet age of Boeing Co. 707’s because of the increase maintenance costs.

• Almost fully specified input frame:
 Earlier the company announced it would sell its aging fleet of Boeing Co. 707’s because of increased maintenance costs.
N-gram modeling limitations

→ Higher n produces better results, but less data to estimate probability correctly!

→ Highly dependent on the source of text (newspaper articles)
 • Spoken language?

→ N-gram will never model deep relations in a sentence, like correct pronouns or distant subject-verb agreement
 • E.g. The restaurant which … has …

SPoT/SParKY:
A trainable generator with deeper linguistic features
(Walker et al. 2002)
Stochastic generation

- Randomly generate sentence plan trees from a content plan tree
 - Map rhetorical relations to clause combining operations
 E.g. justification \rightarrow since, because
 inference \rightarrow conjunction, period, merge
 - Nodes are ordered

Generating Sentence Plans

- How to express each information?
 - Database of Deep Syntactic Structures (DSyntS, similar to parse trees)

- Operations combine DSyntS’s into larger DSyntS’s
Stochastic generation

• Last step: realization of each alternative
 – RealPro (Lavoie and Rambow 97)
 • Combines the syntactic structure (DSyntS) into a surface sentence, using rules of English (e.g. agreement)

“WokThisWay has the best overall quality among the selected restaurants since it is a Chinese restaurant, with good service, its price is 24 pounds, and it has good food quality.”

“WokThisWay is a Chinese restaurant, with good food quality. It has good service. Its price is 24 pounds. It has the best overall quality among the selected restaurants.”

Trainable sentence ranking

• Training the ranker
 – Training data: user ratings of sentences

 – Learning algorithm: RankBoost (Freund et al. 98)
 • Non linear function approximation algorithm, in which the function ranks its arguments
 – Generalizes user ratings for any new sentence
 • Compute ranking score

<table>
<thead>
<tr>
<th>User A</th>
<th>User B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence 1</td>
<td>4/5</td>
</tr>
<tr>
<td>Sentence 2</td>
<td>3/5</td>
</tr>
<tr>
<td>Sentence 3</td>
<td>2/5</td>
</tr>
</tbody>
</table>

…
Trainable sentence ranking

- Want to learn user preferences, but how to represent each sentence plan tree in a finite way?
- Associate features to each alternative tree
 - Node counts of sentence plan tree

![Diagram of sentence plan tree with counts]

Evaluation Goals

- Major problem: not clear that quality is good enough for real systems
- Training evaluation: shows that the learning algorithm (RankBoost) did a good job learning from judges' feedback
 - Compare the human score of the highest ranked alternative with the best alternative chosen by the judges
- But doesn’t show
 - That the output quality is good (for real people)
 - How the output quality compares to rule-based approaches or template approaches
Evaluation Experiment

- 60 subjects compared
 - 7 generators
 - On outputs for 20 text plans
 - Provided subjective rating on 1..5 scale

- Communicator: Template based generator
- SPoT: Trainable sentence planner
- Two Rule-based
- Two Baseline: No Aggregation, Random
- Best: human selection from Random
Results of Evaluation

(60 Subjects)

• Random worst, no aggregation second worst
• Rule-based systems scored in medium-range
• SPoT and template-based score equally well
• But SPoT was trained for this domain in days, template-based developed over ~ 2 years!
Linguistic Variation

• Use different models for ranking
 – E.g. n-gram models computed on texts with different style
 • Problem favor ‘average’ style
• A lot of variation is idiomatic
 – E.g. breaking the ice, beating around the bush
• Stored in human memory?
• Paraphrasing problem
 – Map a meaning representation to multiple realizations
 – Major problem: not much data available!

Paraphrase acquisition

• With a sentence-aligned corpus
 – Merge nodes of parse trees together recursively (Pang et al., 03)
 – Many false paraphrases
 – Sentence-aligned corpus hard to obtain, even more for spoken dialogues
Paraphrase acquisition

• Without aligned corpus: DIRT (Lin & Pantel, 2001)
 – Compute paths in parse trees
 • Leaves are arguments
 • E.g. N:subj; V:buy; V:from; N
 X buys something from Y
 – Based on the Distributional Hypothesis:
 If two paths tend to occur in similar contexts,
 the meanings of the paths tend to be similar
 – For each pair of paths, compute a similarity measure based on the
 number of occurrences with identical arguments
 – Resulting paraphrases are very noisy, produces antonym phrases

→ Still lot of work to be done!

Conclusion

• Complex dialogue needs NLG

• Template are simple to implement and produce
 good results for a very small domain and inflexible
 dialogues

• Rule-based NLG allows you to produce richer
 utterances, but still highly domain dependent

• Machine-learning viable alternative to hand-
 crafting in NLG, probably only option for systems
 with large generation capabilities
Annotated Bibliography Feedback

• Biggest concern: papers that didn’t seem relevant
 – A SDS has many different components—no need to discuss all in focused paper
 – Topics have accepted definitions—reinforcement learning, for example, is a specific type of machine learning

• Another concern: topic range too broad
 – This is a relatively short paper—topics need to be focused

Sample paper outline

• Provide overview of field
 – Why is it important?
 • E.g., automatic learning of dialogue strategies makes it possible to develop systems more quickly
 – Why are you interested in it?
 • Frustration with using a particular system makes you realize how user modelling could help

• Mention focus of paper
 – Specific aspect of topic
 • User modelling in dialogue systems
 • Reinforcement learning to optimize user satisfaction
Sample paper outline (cont’d.)

• Mention specific implementations
 – Reinforcement learning using simulated users vs. user feedback
 – Dynamic user modelling/user modelling based on multi-attributed decision theory

• Evaluation metrics applied to topic
 – How they are applied
 • Automatic/user feedback/none
 – What they measure
 • Automatically derived correlate to satisfaction/user satisfaction
 – Sample results

Sample paper outline

• Conclusion
 – What you think of topic
 • Importance
 • Relevance
 • Potential for use in real-world SDS