Dialogue Models and Dialogue Systems

Prof. Marilyn Walker
www.dcs.shef.ac.uk/~walker
Joe Polifroni
j.polifroni@dcs.shef.ac.uk
Francois Mairesse
f.mairesse@sheffield.ac.uk

Class Organization

- Essay 90% (topics available in two weeks)
- In class 'thought pieces' (on each topic) 10%
- Webpage:

http://www.dcs.shef.ac.uk/~francois/dialog-art/
Topics to be covered

- Architecture of spoken dialogue systems
- Evaluation of spoken dialogue systems
- User modelling
- Spoken Language Generation
- Learning

Today's topics

- Types of Spoken Dialogue Systems
- Architecture of SDS
- Components of SDS
- DM in context of SDS
Spoken Dialogue Systems

- Intelligent agent interacting with humans by voice to complete a variety of tasks
- Many deployed systems
- Can understand what people say
- Sounds human when responds
- Can pass the Turing test

Listen again ...

- Open-ended prompt
- Multiple requests in one utterance
- Confirmation subdialogue
- Reprompting
- Remembering user goal across confirmation subdialogue
- Rapid speech
- Slightly odd synthesis
- Implicit, then explicit confirmation
- Multiple responses
- Politeness behavior
Types of dialogue systems

- **Chatbots**
 - Seek to emulate human-human behavior
 - Aim to pass the Turing Test
- **Tutorial**
 - Goal: instruct a user
 - Topics:
 - Language learning
 - Car repair
 - Algebra

Types of dialogue systems (cont'd.)

- **Task-oriented**
 - Process based
 - Transfer money in bank accounts
 - Pay bill with service provider
 - Information based
 - Book a flight
 - Find a restaurant
 - Find directions
What each type of system is trying to model

- **Chat**
 - Common sense/human knowledge/politeness behavior

- **Tutorial**
 - Underlying process/step-by-step requirements/pedagogical theory

- **Task-oriented**
 - Task requirements
 - Steps required to achieve goal
 - Data needed to achieve goal

Output considerations

- **Chat:**
 - Formal/informal language
 - Friendliness
 - Human-like speech (including hesitations/false starts?)

- **Tutorial**
 - Clarity
 - Step-wise presentation of concepts

- **Task-oriented**
 - Clarity of questions
 - Verbosity
Spoken Dialogue Systems

Audio server

- **Purpose:** data capture
- **Input:** speech; **Output:** digitized version of speech
- **Considerations:**
 - Availability
 - Bandwidth
 - Drop-out
 - Barge-in
Automatic Speech Recognition

- **Purpose:** transcribe the speech
- **Input:** digital speech
- **Output:** String/N-best list representing hypothesized words
- **Considerations:**
 - Vocabulary size
 - Grammar type
 - Speech type
 - Isolated word/continuous speech
 - Spontaneous speech/read speech
 - Accented speech

Natural Language Understanding

- **Purpose:** produce meaning representation from ASR output
- **Input:** String/N-best list
- **Output:** Meaning representation
- **Considerations:**
 - Type of grammar
 - Finite-state
 - Full parse
 - Word-spotting
SLU: Example Full Parse

```
sentence
  statement
    subject
      I
    req_phrase
      polite_req
        would like
      flight_event
        on_date
          on
            month_date
              on
                month
to_phrase
  from_phrase
    from
      from_place
        from
          city_name
            Newark
to
to_place
    to
      to_place
        to
          city_name
            Dallas
```

SLU: Word-Spotting Output

- **I would like to fly from Newark to Dallas on September first**
 - I would like to fly <city_name> Newark <city_name> to <city_name> Dallas <city_name> on September first
 - I would like to fly <from_place> from <city_name> Newark <city_name> to <to_place> <city_name> Dallas <city_name> to <city_name> on <date> September first <date>
 - I would like to fly <from_place> from <city_name> Newark <city_name> to <to_place> <city_name> Dallas <city_name> to <date> <date>
 - <req_flight> I would like to fly <req_flight> <from_place> from <city_name> Newark <city_name> to <to_place> <city_name> on <date> September first <date>

```
"I would like to fly from Newark to Dallas on September first"
```

```
"I would like to fly from Newark to Dallas on September first"
```

```
"I would like to fly from Newark to Dallas on September first"
```

```
"I would like to fly from Newark to Dallas on September first"
```

```
"I would like to fly from Newark to Dallas on September first"
```

```
"I would like to fly from Newark to Dallas on September first"
```
SLU: Example Output

Request
Flight_event
 From: EWR
 To: DFW
 Date: 01Mar2006

Flight_event
 From: EWR
 To: DFW
 Date: 01Mar2006

Dialogue Management

- **Purpose:** decide what system’s next action should be.
- **Input:** a meaning representation from SLU

 Request_phrase
 Flight_event
 From: EWR
 To: DFW
 Date: 01Sep2005

- **Output:** High-level communicative goal(s)
 - Confirm-info-sofar, Get-next-info
Natural Language Generation

- **Purpose:** produce an output string to be shown/spoken to the user
- **Input:** Representation from DM
- **Output:** String for TTS (possibly marked for prosody, etc.)
- **Considerations:**
 - Verbosity
 - Level of formalism
 - “Elegance”

Text-to-Speech Synthesis

- **Purpose:** speak string to user
- **Considerations:**
 - Human-like
 - Flexibility
 - Formant-based synthesis (Stephen Hawking)
 - Human vocal tract modelled and speech truly “synthesized”
 - Concatenative Synthesis
 - Bits of human speech glued together (concatenated)
 - More natural but inherently limited: can only produce what you have units for in the database
How are all these pieces put together?

- One possibility: Dialogue Manager
- Reason: Dialogue Manager is in the “middle” in time and functionality
 - DM comes after ASR and NLU
 - DM precedes NLG and TTS
 - DM is often only component that has access to database (and reasoning about database)

Dialogue Management and Audio Server

If barge-in is enabled, how is truncated input interpreted:

User: I’m interested in Thai restaurants in North London.
System: I know of 8 Thai rest-
User: Wait, that’s not what I wanted.

User: I’m interested in Thai restaurants in North London.
System: I know of 8 Thai restaurants in North London. There’s Banh Mi, Thai Palace, Gold-
User: Wait, that’s the one I wanted.
Dialogue Management and ASR

How can DM constraint recognition choice?

User: I'm going to Dallas on May eighteenth.
System: *Okay, where are you leaving from?*
User: Dulles.
User: I want to return on May twentieth.
System hears:
 *i want to return on may twelfth
 i want to return on may twentieth*
After dialogue management:
System: So that’s returning on May twelfth.

Dialogue Management and NLP

Words/phrases are interpreted in context

User: I need to book a flight.
System: *Okay, where are you leaving from?*
User: Dulles.
Dialogue management and NLG

- Tailor response to fit user model/current history

User: I'm interested in Thai restaurants in North London.
System: I know of 8 Thai restaurants in North London. Two of them have very high food quality: Banh Mi and Golden Siam.

Dialogue Management and TTS

- Emphasize new/pertinent information

User: I'm interested in Thai restaurants in North London.
System: I know of 8 Thai restaurants in North London. Two of them have very high food quality: Banh Mi and Golden Siam.
System: Okay, Chinese restaurants in North London.
Conclusions

- For systems to become more human-like, more intelligence needs to be added to all system components.
- All components of a spoken dialogue system interact with each other.
- Dialogue manager can be the logical module for mediating the interaction.